Archive for the ‘mathematics’ Category

number glass gems

Posted on: September 18th, 2018 by jnovakowski No Comments

One of the elements of The Studio at Grauer that teachers often notice is the collection of numerals we have in baskets and trays on our shelves. I have collected these over the years and find them in craft and scrapbooking stores, thrift stores, Habitat for Humanity ReStore, and Urban Source on Main Street in Vancouver. I am always on the lookout for numerals. Students use them in their play and investigations, ordering them, using them to label/represent their collections or sets of materials or to use as purposeful numbers in their creations (addresses, phone numbers, parts of a story, etc).

IMG_2222 IMG_2223 IMG_2224

Just to clarify some terms…

Digit - A digit is a single symbol used to make numerals. 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are the ten digits we use in our number system to make numerals.

Numeral - A numeral is a symbol that stands for a number.

Number - A number is a count or measurement that represents an idea in our mind about a quantity.    Numerals are often used to represent a number.

It is how these materials are used that leads to them becoming called numbers – they are used to connect meaning to the symbols by matching the symbol to a set or quantity or are put in order/sequence which gives meaning to the symbols. They can also be used to represent the number in an expression or equation.

I chose to make my most recent set of glass gems using the digits 0-9. This way students can put them together to create different numerals/numbers to label their representations/sets/quantities.

IMG_2215

Materials needed: large glass gems (found at Michael’s and some dollar stores), foam paintbrush, Mod Podge and number stickers or cutouts

IMG_2211

Instructions: Using the flat side of the glass gem, apply a light coat of Mod Podge and lay a numeral upside down, centred on the back of the gem. Press down and smooth surface so that the numeral adheres and there are not air bubbles between the surfaces. Let dry for a couple of minutes and then apply a coat of Mod Lodge to the entire surface of the flat side of the glass gem. Let dry for 20-30 minutes and then apply a second coat. Let dry and then they are ready to be used.

IMG_2212

We have also created materials similar to this by adhering stickers to tree cookies/slices or to smooth stones. It’s just handy to have a collection of these and students find all sorts of ways to use them.

~Janice

the new playground at Grauer: where’s the math?

Posted on: September 18th, 2018 by jnovakowski 1 Comment

IMG_1946 Last year the families, staff and community fundraised for a new playground for Grauer Elementary. Grauer is a small school with only five, six or seven divisions (depending on the year) and it is hard work for a small school to raise $60 000! It was very exciting when the school reached their goal and is such a good example of an authentic numeracy experience for students to think about. In the BC curriculum, numeracy is defined as an application of mathematics to solve or interpret an issue or problem in context.

 

 

Last Saturday, I joined staff, parents and community members coming together to install the playground (self-installation with staff support from the playground company saves thousands of dollars). As Ms Partidge and I helped to read the specifications for the installation of one of the fire poles, we commented to a couple of parents around us how much mathematics was involved in the process.

IMG_1917 IMG_1916

IMG_1920

I shared some of the photos from the installation day with the two grades 1 & 2 classes. All of these students had been to The Studio last year with me and had spent some times exploring the idea of “what is math?” so I framed this investigation as “where is the math?” I knew for some students this would create some dissonance as even young children can sometimes already have a very narrow view of what mathematics is and think that it is about counting, numbers and “plussing”. Part of this investigation was to disrupt this thinking. Of course counting, numbers and arithmetic operations are important content areas of mathematics, but they are not the only content. This investigation was one avenue to create meaning for learning mathematics, having students make connections to math beyond the walls of the classroom. The students came up with some initial ideas and we will continue to add to our thinking over the next couple of weeks.

IMG_2110

 

The students were invited to design and create playgrounds and to consider where, when and how mathematics would be applied/used. One group of students followed the kit diagrams to create a Playmobil playground set – there was lots of math talk during that collaboration! Some students chose to draw and paint a playground from their imagination and some built playgrounds with blocks and loose parts, including a playground for animals.

IMG_1988IMG_1989IMG_2055 2 IMG_2053IMG_2066 IMG_2057 2IMG_2083IMG_2111

 

After our first time together, I noticed the students were very interested in the photographs of adults using the levels and measuring tapes so I ordered some (not toy) tools to add to the construction area of The Studio. It was great to watch the students use these tools in authentic ways.

IMG_2042IMG_2049 IMG_2047IMG_2084

One of the classes had gone outside to look closely at the playground twice, creating detailed labelled diagrams or maps of the playground.

IMG_2002 IMG_2075 2 IMG_2109 2

We extended this experience in The Studio by asking the students to create “math maps” indicating “where’s the math?” on recordings of their playground creations.

IMG_2090 IMG_2106

And what are are we assessing in terms of mathematics? These types of investigations and explorations lend themselves to informal formative assessment and gives us a sense of mathematical language the students have and where students are along a learning trajectory around different concepts and skills such as spatial reasoning, comparison of size and quantities and measuring. This type of assessment, that focuses on observing and listening to the students’ play and math talk is so important at this time of year and informs our instructional plans and focus for the fall.

When students engage in this type of learning through materials we make their learning visible through a sharing session at the end of our time together and capturing photographs, videos and students’ thinking so that we can revisit and reflect on the experiences, make connections to new learning experiences and consider questions for further investigation. The following are examples of documentation panels that we create to post in The Studio to help make our learning visible.

Grauer_playground1_Sept2018 copy

Grauer_playground2_Sept2018

I’m looking forward to seeing where the students take us next on this investigation.

~Janice

summer professional learning and reading 2018

Posted on: June 29th, 2018 by jnovakowski No Comments

Although summer is a “break” from the schedules and routines of teaching, it has always also been a time of learning for me. Whether it be taking course work or having the time to read deeply or attend professional learning events, I find the summer a great time to learn new things and both reflect on and rejuvenate my teaching practice. Of course, in order to really refresh, I do take some time away from professional thinking by reading novels, memoirs, travel guides and cookbooks! I try and learn new things and am currently enjoying learning about different types of weaving, dyeing using natural materials, using new art techniques and focusing on developing my knowledge around local plants All of these personal interests do tend to find their way into my professional work though as well!

One learning goal I have for myself is to become more familiar and fluent with using desmos. Desmos is an online graphing application (and available as an app as well) but has so many possibilities for supporting mathematical thinking for elementary and secondary students. The desmos website is full of examples and ideas for student projects as well as resources for teachers. I feel I just have a beginning understanding of what desmos has to offer so am looking forward to digging in and playing with it over the summer.

Professional Reading

My first summer professional reading stack of the summer!

IMG_9691

Engaging Children: Igniting a Drive for Deeper Learning K-8 by Ellin Oliver Keene

Lifelong Kindergarten: Cultivating Creativity through Projects, Passion, Peers, and Play by Mitchel Resnick and Ken Robinson

Play Matters by Miguel Sicart

Arithmetic by Paul Lockhart

Give Me Five!: Five Coach-Teacher-Principal Collaborations that Promote Mathematical Success by Janice Bradley

Essential Assessment:  Six Tenets for Bringing Hope, Efficacy, and Achievement to the Classroom (Deepen Teachers’ Understanding of Assessment to Meet Standards and Generate a Culture of Learning) by Cassandra Erkens and Tom Schimmer

Softening the Edges: Assessment Practices that Honor K-12 Teachers and Learners by Katie White

I have also ordered these two need mathematics book through the NCTM and the ATM.

Screen Shot 2018-06-28 at 9.40.42 PM Screen Shot 2018-06-28 at 9.39.55 PM

An area of focus in our district will continue to be assessment. Continuous assessment that leads to responsive, intentional instructional choices is a practice that is woven throughout series I do around mathematics professional learning. Two books that I am going to revisit this summer as I begin to plan professional learning experiences for next year include:

IMG_9291

 

Rethinking Letter Grades is a book by Canadian authors with local examples and I appreciate the “triangle” from this book that shares that in order to have authentic evidence of learning you need three types of assessment data – observations, conversations/interviews and products (which includes projects, creations, writing, drawing, diagrams, quizzes, tests).  The Formative Five is a mathematics specific book focusing on five formative assessment practices.

 

 

New assessment reads for this summer include the following:

IMG_9296 IMG_9549

Katie White, author of Softening the Edges, will be a featured speaker at our Curriculum Implementation Day in Richmond next year. Essential Assessment was a book recommended by Angie Calleberg of the BC Ministry of Education as she said the Ministry used this book to inform assessment projects in the province. And although I do have some concerns about Hattie’s use of statistics and his meta analysis of meta analysis studies, I know his new book will come up in professional conversations around assessment so want to have a quick read through it.

 

Professional Learning Opportunities

For Richmond educators, professional learning opportunities are listed within the portal. Go to Learn 38 then to the Professional Learning tile to find both internal and external events.

Screen Shot 2018-06-29 at 12.02.59 AM

For this year’s BCTF PSA Day in October, consider attending the Northwest Mathematics Conference in Whistler. Information about speakers, accommodation and registration is now available here:

Northwest Mathematics Conference website 

Also in October, the Vancouver Reggio Association is hosting Tiziana Filippini, a pedagogista from Reggio Emilia, Italy. More information available here:

Vancouver Reggio Association – Tiziana Filippini – October 2018 

A free professional learning event about coding for teachers is being hosted in Vancouver this summer, sponsored by the Government of Canada:

Teachers Learning Code – Vancouver – July 24-26 2018

Lots of districts in BC offer professional learning events at the end of the summer so check Twitter, Facebook, the BCTF site and district websites for more information.

For those of you interested in building your own knowledge of Indigenous perspective, culture and content, Talasay Tours offers some grant opportunities:

Talasay Tours – Authentic Cultural and Eco Experiences

And the Museum of Anthropology at UBC currently has an exhibit highlighting six cultures from across BC;

MOA – Culture at the Centre

 

Have a lovely summer – a time for adventures, rejuvenating and learning new things!

~Janice

June thinking together: How can we work together with families to support our students’ mathematical development?

Posted on: June 28th, 2018 by jnovakowski No Comments

Last June I attended the Cognitively Guided Instruction conference in Seattle and one of the things that really resonated with me was the number of projects around mathematics that schools were working on that had a focus on involving families and connecting to the community. We were asked to commit to “one thing” to connect our learning at the conference to our work in our contexts for the following school year and my one thing was:

Screen Shot 2018-06-28 at 10.46.15 AM

Before the CGI conference, I might have used the term parent involvement instead of family engagement but the conference nudged my thinking – there are many people taking care of our students – parents, grandparents, siblings, legal guardians and caregivers. The term “family” is more inclusive and the term engagement rather than involvement is more representative of what our hopes and goals are.

Over the past few years, I have done several event for school and district PACs as well as our annual Learning and the Brain conference for parents. This year I did two outreach interactive sessions about mathematics for parents through the Richmond Public Library, coordinated by our Settlement Workers in Schools program.

IMG_3898 IMG_3899 IMG_3900 IMG_3901

Increasing parent engagement and making mathematics education visible in our community area areas and goals that I am going to continue to focus on. Suggestions welcome!

Many parents, guardians and caregivers of our students have questions about the “new” mathematics curriculum and my short response is usually: the content has not changed significantly and new content has been added in the area of financial literacy and more learning standards and big ideas around computational fluency have been added. Those changes were part of the feedback cycle in the curriculum redesign. Parents had many opportunities to provide feedback through stakeholder meetings across the province (and within our district) as well as being able to provide online feedback. Beyond the core content (knowledge) at each grade level, other elements that are part of the curriculum redesign, and not just in mathematics, is the focus on core competencies, curricular competencies, weaving in Indigenous knowledge and perspectives and considering a range of instructional approaches to be inclusive of the diverse learners in our classrooms.

The BC Ministry of Education has provided information for parents on the curriculum redesign on their website and this information is available in four languages (tabs at top of website):

BC Ministry of Education curriculum redesign information

Beginning this year (not including 2018 grade 12 students) students will need to pass a Graduation Numeracy Assessment as part of their graduation requirements. We need to help communicate to our parent community that this is not a “mathematics” exam and is not connected to a specific mathematics grade or course.  The Ministry has provided information for parents on the Graduation Numeracy assessment that you can share with them:

Graduation Numeracy Assessment information for parents

We had one pages of the Ministry document translated into Chinese for our parent community for those schools that were part of the gradual implementation of the assessment in January:

SD38_GNA Information for Parents (Chinese page 1)

 

Screen Shot 2018-06-28 at 11.07.23 AMTable Talk Math is a website and book created by John Stevens. In it he shares ways parents can engage in talking about mathematics with their children at home. He has a weekly newsletter  that parents and teachers can subscribe to on his website. John’s five-minute Ignite talk is shared on his site. At the end of his talk (with teachers as the intended audience), he suggests four calls to action for educators to work in partnership with their students’ parents:

  • celebrate parent involvement
  • show your students’ parents that you care
  • show parents how they can help
  • help parents help their kids be amazing

Table Talk Math website link

And here is a collection of suggestions for parents that I have shared at various district and public events:

SD38_Supporting_Mathematics_for_Parents_2018

I am in the process of drafting a parent information bulletin for our school district, which will be translated into multiple languages once it is finalized. Look for it this September!

As we think about ways to engage families in mathematics, here are some questions to consider…

  • What do your students and their families think about mathematics? What are their feelings and beliefs?
  • How are we sharing information about the mathematics curriculum with families?
  • Do your students and their families see themselves represented in mathematical learning experiences at school?
  • How do you make use of your families’ cultural assets in our mathematics learning experiences in schools?
  • How are we sharing and communicating our students’ mathematical thinking and learning to families?
  • How do we create reciprocal learning opportunities in mathematics between families and the school context?
  • What opportunities do we create to connect mathematical learning to our local community? 
  • How are families engaged with mathematics learning in our classrooms and schools?

~Janice

school-based collaborative professional inquiry projects

Posted on: June 14th, 2018 by jnovakowski 1 Comment

One of the professional learning structures used in our district is collaborative professional inquiry based in schools. I collaborate with school teams that come together with a focused area of professional inquiry in the area of mathematical teaching and learning. I support the school teams through developing curricular and pedagogical content knowledge through mini-sessions and providing resources as well as planning together and engaging in adapted lesson study including time each visit to debrief and plan next steps. This year, all school teams involved included at least one teacher in the district’s mentoring program as we focus on supporting teachers new to our district and to the profession.

General Currie (term 1)

The three kindergarten teachers at Currie (two new to teaching K) chose to focus on core concepts and inclusive instructional routines related to these concepts. Inclusive routines are those that provide access points for all students in the class and are used regularly over time to develop mathematical thinking and ideas. The routines focus on developing the mathematical curricular competencies and content in our curriculum. Over several sessions in the kindergarten classrooms we engaged in routines such as counting collections, clothesline, decomposing and number provocations. The three teachers and their classes followed up this project with a field trip to The Studio at Grauer.

IMG_3858 IMG_8662 IMG_9235 IMG_9256

IMG_9848 IMG_9829 IMG_9852

 

Garden City (terms 1 & 2)

Three small groups of kindergarten through Grade 5 teachers came together with a combined focus of “connecting the dots” of the redesigned curriculum – weaving together key elements such as inquiry, teaching and learning through big ideas, new content areas like financial literacy and a focus on First Peoples Principles of Learning and connecting math to place. I spent several sessions in classrooms co-teaching with teachers and having lunch hour meetings.

IMG_9747 IMG_9735 IMG_9726 IMG_1060

IMG_0378 IMG_0381

IMG_1026 IMG_1017

IMG_1062 IMG_1063

IMG_7688 IMG_7347

 

Tomsett (term 2)

A large group of kindergarten through grade 6 teachers chose to focus on supporting student learning of number concepts through a guided math approach. This approach to teaching math was new to all of the teachers involved. A guided math session (often done once or twice a week) has a focus of a core math concept as the focus. A whole group mini-lesson or routine begins the session followed by opportunities for students to practice in small groups or independently. This practice may involve working with materials, math games, an open task or problem or using an app with visual tools that support mathematical understanding. The teachers works with small groups of 2-5 students round this core math concept for about 5-8 minutes, designing and structuring a mini-lesson for them at their “just right” math level of understanding. The is an opportunity for the teacher to collect assessment evidence of students’ understanding. The end of the session involves connecting the dots between the practice opportunities and consolidating students’ thinking through sharing and discourse.

I spent several in-class sessions with student and teachers as well as lunch hour debriefs, sharing and planning with the teachers.  In between my visits, the teachers collaborated and shared resources and ideas amongst themselves. At the end of the term the grades 5&6 teacher reflected on how the project had transformed her teaching and commented that she will never go back to teaching math the way she used to. All of the teachers commented on how much better they knew each of the students’ mathematical understanding through this approach.

IMG_2701 IMG_2707

IMG_3008 IMG_3010

IMG_3885 IMG_3013

Steves (terms 2 &3)

A team of four grades 2-5 teachers chose to focus on structures that support differentiation in mathematics teaching and learning. In-class co-teaching sessions and lunch hour meetings focused on inclusive instructional routines, rich open tasks and providing choice with a lens to addressing the range of learners in each classroom. In the grades 2&3 class routines such as number talks and Which One Doesn’t Belong? and games were introduced and extended through work with materials. In the grades 3&4 and 4&5 classes, some of the structures we focused on were choice – choice of materials and choice of ways to represent thinking. We also used open questions and contextual problems that focused on big ideas and core concepts and considered how these tasks provided access points for all learners.

IMG_3319 IMG_3317

IMG_3325

IMG_3536 IMG_3541

IMG_3557 IMG_6248 IMG_6542 IMG_6268

IMG_6561

 

I always enjoy being immersed in classrooms and schools, learning together with teachers and students!

~Janice

May thinking together: How can we weave Indigenous content and perspectives into the teaching and learning of mathematics?

Posted on: June 12th, 2018 by jnovakowski 1 Comment

Screen Shot 2018-06-12 at 11.25.11 PMThe First Peoples Principles of Learning is a foundational document in the redesign of BC’s curriculum frameworks. The Principles were developed by FNESC (First Nations Education Steering Committee) and the poster in English can be found HERE and in French can be found HERE. As Jo Chrona would say, the FPPL are much more than the poster – they are principles that are inclusive of all children in BC while honouring Indigenous ways of being and knowing. FNESC has developed teaching resources such as the In Our Own Words resources for K-3 and the Math First Peoples resource for Grades 8&9 (currently being updated) but much of the information and ideas in the resource can be adapted for all grade levels.

 

On May 17, Leanne McColl, Lynn Wainwright and myself attended the 8th annual K-12 Aboriginal Math Symposium. Educators from across BC attend this symposium. Information about the symposium can be found HERE and there is a tab on the website that links to archived resources.

I have attended this symposium for years and was fortunate to share a project from The Studio at Grauer at this year’s event. Some of the slides from my presentation can be found HERE , under May 2018.

Screen Shot 2018-06-12 at 10.34.25 PM

A focus of my presentation was on three of BC’s mathematics curricular competencies. These competencies are part of the learning standards for the K-9 mathematics curriculum and are aligned with the First Peoples  Principles of Learning and the Core Competencies.

Screen Shot 2018-06-12 at 10.34.41 PM

The BC Numeracy Network has archived different types of resources to support the redesigned curriculum. Under the Connections tab, there is a page dedicated to resources that support the weaving of the First Peoples Principles of Learning into mathematics teaching and learning.

Link to BCNN page here

Screen Shot 2018-06-12 at 11.11.05 PM

In the Richmond school district, two of the four goals of our Aboriginal Education Enhancement Agreement (AEEA) are focused on all learners (not just those with Indigenous ancestry) developing an understanding about the First Peoples Principles of Learning, our local First Nations community and Indigenous worldviews and perspectives as part of engaging in the process of reconciliation through education.

Screen Shot 2018-06-12 at 11.55.24 PM Screen Shot 2018-06-12 at 11.56.43 PM

Teachers often ask me about where to start in this area and are concerned about not doing things properly or that they do not have enough knowledge themselves. I suggest that teachers contact someone in their district about local protocols and then try something in collaboration, maybe inspired by one of the above suggested resources. Look for authentic connections within your community and across disciplines in the curriculum..  Some of the things that I have done to continue to learn more in this area are: read articles and books recommended to me, seek out opportunities to learn from elders and Indigenous community members and colleagues, get involved with district or university-based collaborative projects,  connect with your district’s Aboriginal Education team, attend workshops and tours offered through museums, cultural centres and local Indigenous organizations. There are lots of opportunities to learn and see connections to mathematics…we need to go forward together with an open mind and an open heart.

To consider…

How can the First Peoples Principles of Learning be embedded in our mathematics teaching and learning? How do BC’s mathematics curricular competencies reflect these principles?

One of the principles is that “learning takes patience and time” – how does this principle bump up against some ideas around the teaching and learning of mathematics?

How might we work towards the goals of our Aboriginal Education Enhancement Agreement within our mathematics classrooms? What role could mathematics play in the process of reconciliation?

What does it mean to use authentic resources, stories and elements of culture in our mathematics teaching? How is this affected by the land and the story of the place where we live and teach? Who can help us think about these ideas? Where can I learn more and find resources?

What opportunities do your students of Indigenous ancestry have to see their community, family and culture represented in the mathematics they are learning at school? Within our diverse community, how do all students see themselves reflected in their mathematics experience? What is the relationship between our students’ mathematical identities and their personal and cultural identities?

What interdisciplinary projects might connect mathematics with Indigenous knowledge and worldviews?

~Janice

April thinking together: How do the core competencies connect with mathematics?

Posted on: June 7th, 2018 by jnovakowski

The Core Competencies are at the centre of BC’s redesigned curriculum and underpin the curricular competencies in each discipline, such as math. An overview video about the Core Competencies can be viewed HERE. Drawing from global education research and through provincial consultation with stakeholder groups, three Core Competencies were identified – Thinking (creative and critical), Communication and Personal & Social (positive personal and cultural identity, personal awareness and responsibility, and social responsibility).

As we develop awareness about the Core Competencies during the school year, we consider the ideas of “notice, name and nurture” – looking for evidence of core competency development or application in our classrooms and schools.

In our district, we have created Core Competency posters in both English and French, overviewing all the core competencies as well as posters specific to one core competency (all available through the district portal). These posters are up in classrooms and schools to create awareness and develop common language around the core competencies.

In The Studio at Grauer, much of the work we do in mathematics has elements of the core competencies involved. In the mathematics curriculum, each of the curricular competencies is linked to one or more of the core competencies. The COMMUNICATION chart in the photograph below is an example of how I make this focus clear to myself, teachers and the students when we work together in The Studio. I often identify a specific curricular competency in our initial gathering meeting, that we are going to focus on together as we work with a mathematical idea. For example, I might say to the students,
“Today as you are thinking about comparing and ordering fractions with materials, practice explaining and justifying your decisions to a partner – that will be our focus when we come back as a whole group at the end of our time together today.” 

Other times, I will ask the students to reflect on their last experience in The Studio and consider what they need to work on around communication, either personally or as a class.

IMG_8070 IMG_8069

The following are documents that show the links between the Core Competencies and the Curricular Competencies in Mathematics:

SD38 K-5 Math Connections between Core and Curricular Competencies

SD38 6-9 Math Connections between Core and Curricular Competencies

SD38 K-5 Math Communication

We have woven self-assessment and reflection about the core competencies into our projects and learning together throughout the year. During the last school year, there was a requirement for students to do a “formal” self-assessment to be included in the June report card. For students to authentically self-assess and reflect, they need to be familiar with the language of the core competencies and be able to connect to learning experiences they have had throughout the school year. During the third term last year, the grades 3&4 class from Grauer visiting The Studio weekly to engage in a mathematics project around the work of Coast Salish artist Susan Point. At the end of each session together, we had the students share their learning – what did you learn? how did it go/what did you do? what’s next for your learning/what are you wondering about? Sometimes students turned and talked to someone near them, other times, students shared their learning and thinking to the whole class.

Screen Shot 2018-06-07 at 11.31.56 AM Screen Shot 2018-06-07 at 11.32.04 AM

Screen Shot 2018-06-07 at 11.30.59 AM Screen Shot 2018-06-07 at 11.31.10 AM

Every few weeks, we had the students do a written/drawn self-assessment and reflection. We have found that using question prompts to support reflection and considering evidence of learning has been the most authentic and personalized way to have students think about and connect to the core competencies. We developed some recording formats to capture students’ thinking, with the clear intent that students are not expected to “answer” all the questions – that they are they to prompt and provoke reflection and self-assessment. A team of Grauer educators were working together on an Innovation Grant project around creative thinking and growth mindset and we wove these ideas in to some of the self-assessments.

Screen Shot 2018-06-07 at 11.31.23 AM

Screen Shot 2018-06-07 at 11.31.34 AM Screen Shot 2018-06-07 at 11.32.19 AM Screen Shot 2018-06-07 at 11.32.35 AM

Here is one example of a recording form:

Grauer_Competency_Math_Reflection_May2017

As we are coming to the end of another school year and are thinking about the student self-assessment of the core competencies component for year-end communication of student learning, we might consider the following questions:

  • What opportunities have students had to experience and develop the core competencies in their mathematics learning?
  • What opportunities over the school year have students had to name and reflect on the core and curricular competencies in mathematics?
  • How have we made the core competencies and curricular competencies in mathematics visible in our classrooms and schools?
  • How have the core and curricular competencies language and ideas been embedded in the mathematical community and discourse in our classrooms and schools?
  • What different ways have students been able to share, reflect on and self-assess their mathematical thinking and learning?

~Janice

2017-18 big mathematical ideas for grades 3-5

Posted on: May 13th, 2018 by jnovakowski 2 Comments

In its fourth year, a group of grades 3-5 teachers came together three times after school to think about the big mathematical ideas for this grade range, considering the pedagogical content knowledge needed to teach and assess student learning. Our first session of the year on October 18 focused on the number concepts big ideas in our curriculum which at gates 3-5 focus on a deep understanding of fractions.

We began with an image from fractiontalks.com – a website curated by Canadian math educator Nat Banting. We considered what students needed to understand about fractions to engage with this task and anticipated how are students might respond to the challenge of figuring out what fractional part of the large square is the shaded blue triangle.

IMG_9272

IMG_9273 IMG_9271 IMG_9270

We considered how different materials provided different affordances for thinking about fractions, particularly thinking about different ways to represent fractions – set, area and linear. Some of the text slides from the session and a handout follow.

BMI_October_2017_textslides

BMI_Fractions_2017

Unfortunately, I had to cancel our January session due to illness.

We came together again on April 11 and based on feedback from the group, discussed computational fluency and the role of inquiry in learning mathematics. We revisited instructional routines such as Which One Doesn’t Belong? (wodb.ca) and considered how these routines incorporate questioning, wondering and nurture the curricular competencies in mathematics.

IMG_6301 IMG_6303 IMG_6302 IMG_6300

BMI_April_2018_textslides

~Janice

Talk With Our Kids About Money 2018

Posted on: May 12th, 2018 by jnovakowski

As part of a national financial literacy month every April, the Richmond School District participates in Talk With Our Kids About Money Day (TWOKAM) the third Wednesday in April. Financial literacy is a new part of BC’s redesigned mathematics curriculum with a content learning standard at each grade level from K-grade 9.

To raise awareness of the resources available to teacher, local CFEE (Canadian Federation for Economic Education) representative Tracy Weeks shared materials and information at our Elementary Math Focus Afternoon in January.

IMG_2449 2

In April, an assembly was held at Burnett Secondary with CFEE president Gary Rabbior talking to students about financial literacy.  Tracy Weeks (CFEE) facilitated an information session for parents at Hamilton Elementary on April 9.

Screen Shot 2018-05-13 at 12.44.39 AM

 

On April 18 – national TWOKAM day – a finale event was held for parents and students at Brighouse Elementary. Student projects from Burnett Secondary were on display and guest speaker Paul Lermitte shared ideas with parents for developing financial literacy with their children at home. Thank you to Brighouse for hosting this well-attended event!

IMG_6618 IMG_6617

IMG_6624 IMG_6622 IMG_6621

We hope to continue to grow the idea of “Money Fairs” (think financial literacy fairs like science fairs) in our district as we continue to teach and learn about financial literacy in our classrooms.

TWOKAM video

TWOKAM – CFEE website link

~Janice

March thinking together: What is computational fluency?

Posted on: May 12th, 2018 by jnovakowski

Computational fluency is defined as having efficient, flexible and accurate methods for computing.

-NCTM, 2000

Computational fluency develops from a strong sense of number.

(BC Math Curriculum, Big Idea, K-9, 2015)

 

In BC’s redesigned curriculum, computational fluency has been given a heightened emphasis. In mathematics, there are typically four strands of topics/content and in this iteration of our curriculum, a fifth strand – computational fluency –  has been added and this is reflected in the big ideas and curricular competencies and content.

The meta big idea around computational fluency in our BC K-9 Mathematics curriculum is:

Computational fluency develops from a strong sense of number.

There is a big idea for computational fluency at each grade level:

K: One-to-one correspondence and a sense of 5 and 10 are essential for fluency with numbers.
Grade 1: Addition and subtraction with numbers to 10 can be modelled concretely, pictorially, and symbolically to develop computational fluency.
Grade 2: Development of computational fluency in addition and subtraction with numbers to 100 requires an understanding of place value.
Grade 3: Development of computational fluency in addition, subtraction, multiplication and division of whole numbers requires flexible decomposing and composing.
Grade 4: Development of computational fluency and multiplicative thinking requires analysis of patterns and relations in multiplication and division.
Grade 5: Computational fluency and flexibility with numbers extend to operations with larger (multi-digit) numbers.
Grade 6: Computational fluency and flexibility with numbers extend to operations with whole numbers and decimals.
Grade 7: Computational fluency and flexibility with numbers extend to operations with integers and decimals.
Grade 8: Computational fluency and flexibility extend to operations with fractions.
Grade 9: Computational fluency and flexibility with numbers extend to operations with rational numbers.

As computational fluency with whole numbers is focused on in the earlier grades, it is expected that students will apply number sense and computational fluency and flexibility to their work with decimal numbers, greater numbers, integers and fractions.

For addition and subtraction and then multiplication and division, students develop computational fluency over three years – beginning with emerging fluency, then developing through proficiency and then moving on to extending fluency with increased flexibility and ability to apply strategies across contexts and content.

Screen Shot 2018-05-12 at 10.50.35 PM

For example, with addition and subtraction:

In Grade 3, the curricular content learning standard is “addition and subtraction facts to 20 (emerging computational fluency)“.

In Grade 4, it is “addition and subtraction facts to 20 (developing computational fluency)”.

And in Grade 5, it is “addition and subtraction facts to 20 (extending computational fluency)”.

It is also important to be aware of what comes before and after these three stages of development. In grades 1 and 2, students are introduced to the concepts of addition and subtraction as well as the related symbolic notation. They begin to practice mental math computational strategies building on their understanding of five and ten and decomposing numbers to work flexibly with addition and subtraction questions. In grades 6&7, students apply computational strategies that they have developed for addition and subtraction facts with greater whole numbers, decimal numbers and integers.

There is a similar progression for multiplication and division facts.

A note about memorizing…memorizing is one form of learning but is not necessarily related to students having computational fluency. Many teachers in our district report that their students have memorized their addition or multiplication facts but need support with thinking flexibly and fluently with numbers. In our BC mathematics curriculum, the expectation is that by the end of Grade 3 for addition and the end of Grade 5 for multiplication,  that most students will be able to recall their facts. In a previous curriculum, recall was defined as being able to compute within three seconds. For some students, there may be instant memory retrieval and for other students they may bring the sum or product to mind through an efficient mental computational strategy or associative retrieval process.

Number Talks are an essential instructional routine in developing strategies, mathematical discourse and creating awareness about computational fluency. Key resources include:

Screen Shot 2018-05-12 at 10.50.05 PM

Number Talks

BC_Computational_Fluency

 

So some questions to think about…

How would you define computational fluency? What does it look like? sound like?

What do your students need move towards more developed computational fluency?

What do you need to understand more about regarding a continuum of learning and specific strategies related to computational fluency?

What are different ways to develop computational fluency? What instructional routines, games or tasks could we use for practice?

How can we communicate the goals of computational fluency to parents?

~Janice