2018-19 primary teachers study group: session 2

Posted on: December 12th, 2018 by jnovakowski No Comments

Our second session of this year’s primary teachers study group was hosted by Anna and Shannon at McNeely Elementary. Anna shared the book about mushrooms that her students researched and wrote after finding and investigating the mushrooms they found in their mini-forest near the school.

IMG_5073

 The class was also inspired by one of our study group books, Anywhere Artist, and went out into their mini-forest to create art with found materials.

IMG_5071 IMG_5070

IMG_5067

The land art of UK artist James Brunt (on twitter at @RFJamesUK) also inspired us to take on the #100LeavesChallenge.

Anna and Shannon toured us through McNeely’s new outdoor learning space and through their mini-forest, adjacent to the school.

IMG_5079

IMG_5084

Together we shared ideas for how different plants, trees and animals could inspire mathematical thinking or questions to investigate.

Thank you to Anna and Shannon for hosting us!

~Janice

2018-19 primary teachers study group: session 1

Posted on: December 12th, 2018 by jnovakowski No Comments

Beginning our sixteenth year, the Richmond Primary Teachers Study Group met for the first time this school year on October 11 at Diefenbaker Elementary. As agreed upon by study group participants, this year’s focus is on the teaching and learning of mathematics in places and spaces outdoors, considering both how to take mathematics outdoors but also how the outdoors can inspire mathematical thinking.

Our three study groups books that we are going to draw inspiration from this year are:

Screen Shot 2018-12-12 at 2.57.44 PM Screen Shot 2018-12-12 at 2.56.36 PM Screen Shot 2018-12-12 at 2.56.15 PM

 

 

 

 

 

 

Messy Maths by Juliet Robertson

50 Fantastic Ideas for Maths Outdoors by Kristine Beeley

Anywhere Artist by Nikki Slade Robinson

 

There are so many books and resources available to support our professional inquiry together this year.

IMG_3253 IMG_3252

 

 

 

 

 

 

We spent some time exploring the Diefenbaker garden, playground and new outdoor learning area and considering what math we could find in these spaces.

IMG_3259 IMG_3267 IMG_3269 IMG_3256 IMG_3258

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IMG_3270One of the tasks we did was using materials or referents to estimate and create the length of one metre. We followed this up by each making our own “Sammy the Snake” – a one metre length of rope (idea from the Messy Maths book). This length of rope can be part of a “go bag” to take outside for measuring lengths, perimeter, circumference of trees and to think about fractions (by folding the length of rope). It is a flexible tool to support students’ developing understanding of comparing, ordering and constructing concepts of measurement and number.

 

 

 

 

Screen Shot 2018-12-12 at 2.43.49 PM

Thanks to the Diefenbaker team for hosting us!

~Janice

 

December thinking together: visualize to explore mathematical concepts

Posted on: December 11th, 2018 by jnovakowski No Comments

This month’s focus is on the curricular competency: visualize to explore mathematical concepts.

Screen Shot 2018-12-07 at 12.30.01 AM

In the 2007 WNCP mathematics curriculum, visualization is defined as involving “thinking in pictures and images, and the ability to perceive, transform and recreate different aspects of the visual-spatial world”. Concepts such as number, spatial relationships, linear relationships, measurement, and functions and relations can be explored and developed through visualization.

In the new BC grades 10-12 courses, the elaborations for this curricular competency are:

  • create and use mental images to support understanding
  • visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams

Visualization and spatial reasoning involve the relationship between 2D and 3D shapes as well as dynamic imagery such as different perspectives, movement, rotations and reflections. Visualizing involves an interplay between internal imagery and external representations  (Crapo cited in NRICH article below). Students need experience with concrete and visual representations/pictures/models as well as being able to visualize something in their minds, often referred to as the “mind’s eye”.

Canadian and International research has shown that there are links between strong abilities to visualize and success in mathematics. One widely used psychological assessment for visualization involves “The Paper Folding Test”  in which a paper is folded and a hole is placed through a specific location and the participant is asked to visualize what the paper will look like when it is unfolded, utilizing the ability to generate, maintain and manipulate a mental image, (Lohman, 1996 cited in Moss et al 2016). A recent study also found a link between the ability to visualize and success with solving mathematical word problems, citing the ability to mentally visualize and make sense of the problem contributed to success in diagramming and solving problems (Boonen et al 2013 cited in Moss et al 2016). The Canadian work of (Moss et al 2016 ) and their Math for Young Children research project focuses on spatial reasoning and the importance of developing students’ flexible use of visualization skills and strategies.

 

Instructional Resources

Screen Shot 2018-12-11 at 4.11.50 PMThe book Taking Shape (referenced below) provides several visualization tasks on pages 30-35 but visualization is an important component of most of the spatial reasoning tasks in the book.

 

 

 

 

Quick Images is an instructional routine that supports the visualization of quantities and shapes. Dot patterns and Screen Shot 2018-12-11 at 2.26.05 PMcomposition of shapes are often used as quick images. More information and videos can be found on the TEDD website HERE.

 

A short article from the NCTM explaining the connection between visualization and subitizing can be found here:

NCTM_quickimages_tcm2016-12-320a

 

Screen Shot 2018-12-11 at 2.28.51 PMFawn Nguyen has compiled a collection of visual patterns HERE. Visual patterns provide the first three steps of the pattern and then students are asked to visualize the next steps, which involves both arithmetic, algebraic and geometric thinking.

 

Desmos in an online graphing calculator that allows for students to predict, Screen Shot 2018-12-11 at 2.52.41 PM

visualize and graph linear relationships and functions and relations.

 

 

So what does it mean to be proficient with visualizing?

As we begin to work with the new proficiency scale across BC, we need to consider what it means to be proficient with visualizing to explore mathematical concepts in relation to the grade level curricular content. As more teachers across the provinces the the scale, we will have examples of student proficiency that demonstrates initial, partial, complete and sophisticated understanding of the concepts and competencies involved.

For example, a grade six student at the end of the year would be considered proficient with visualizing geometric transformations if they were able to follow directions to mentally translate, rotate and reflect a 2D shape and show or describe the resulting orientation/position.

Screen Shot 2018-09-28 at 10.02.24 PM

Some questions to consider as you plan for learning opportunities to develop the competency of visualizing:

How is the core competency of communication developed through the process of visualization? What different ways can students show and explain what they are visualizing – using materials, pictures or words?

How do the competencies of estimating and visualizing complement each other to support reasoning and analyzing in mathematics? How can using visual referents support estimating?

How can we help students understand the purpose and usefulness of developing visualization skills and strategies? What examples can we share of scientists and inventors that used visualization to develop theories and ideas?

What opportunities are we creating for students to practice and use visualization skills and strategies across different mathematical content areas such as geometry, measurement, number, algebra and functions?

~Janice

 

References

Thinking Through and By Visualizing (NRICH)

The Power of Visualization in Math by Jeremiah Ruesch

Spatial Reasoning in the Early Years: Principles, Assertions, and Speculations by Brent Davis and the Spatial Reasoning Study Group, 2015

Taking Shape: Activities to Develop Geometric and Spatial Thinking by Joan Moss, Catherine D. Bruce, Tara Flynn and Zachary Hawes, 2016

 

November thinking together: develop mental math strategies

Posted on: December 2nd, 2018 by jnovakowski No Comments

Develop, demonstrate and apply mental math strategies Screen Shot 2018-12-01 at 8.40.08 PM

is the focus of one of the Reasoning and Analyzing curricular competencies from grades K-9. For K-5 the focus is on developing mental math strategies as a means to developing fluent and flexible thinking with numbers. In grades 6-9 the focus is on demonstrating and applying these whole number strategies to new number contexts.

Screen Shot 2018-12-01 at 8.41.17 PM

 

 

 

 

As is the case with all the mathematics curricular competencies, the learning standard is the same for K-5 and then continues for grades 6-9. Grades K-5 focus on the development of mental math strategies while grades 6-9 focus on the application of mental math strategies. The grade level-ness is enacted when the curricular content and curricular competency are connected.

So for example, in grades 6-9, the competency using mental math strategies with whole numbers is applied to decimals in grade 6, integers in grade 7, fractions in grade 8 and rational numbers in grade 9 and it is this intersection of curricular content and competency that is assessed.

The suggested mental math strategies are listed in the elaborations for the curricular content for each grade. Elaborations are suggestions and support for instructional decision-making and are not meant to be used as a requirement or an assessment checklist. Mental math strategies are strategies that are intended for students to be able to do mentally. Computational fluency involves  flexible strategy use – both mentally and recorded with paper/pencil, whiteboards, etc. The strategies are transferable to working with larger numbers or to different types of numbers such as fractions and integers. Students may be introduced to the strategies by their peers during a number talk or during an instructional task. When strategies are introduced, specific mathematical language and visual scaffolds such as ten frames or number lines are often used. Some strategies may need to be practiced in different ways before students are able to use them mentally in flexible ways, and choose strategies that make sense for the numbers they are working with. As an example, the following are the computational strategies suggested in the content elaborations for grade 2:

Screen Shot 2018-12-01 at 10.39.39 PM Screen Shot 2018-12-01 at 10.39.16 PM

 

 

 

 

 

 

 

In our 2007  curriculum (WNCP) there was a clear definition of what Mental Math is (in the 2007 iteration of our curriculum, it was named as a mathematical process). “Mental mathematics is a combination of cognitive strategies that enhance flexible thinking and number sense. Mental mathematics enables students to determine answers without paper and pencil. It improves computational fluency by developing efficiency, accuracy, and flexibility.”

Goals of developing fluency with mental mathematics include:

  • developing confidence in doing mathematics
  • being liberated from calculator dependence
  • becoming more flexible thinkers
  • be more able to use multiple approaches when problem solving

(Rubenstein, 2001)

Strategies develop over time and complement each other. Examples of mental math strategies drawn from the elaborations in our BC curriculum framework include:

  • counting on
  • making ten
  • decomposing (to make tens/hundreds, by place value)
  • double and related doubles (doubles plus one, etc)
  • bridging over tens (transferable to hundreds, thousands etc)
  • compensating
  • adding to find the difference
  • commutative, associative and distributive principles
  • annexing zeroes
  • halving and doubling

Different visual tools can be used to support students’ development of mental math strategies such as ten frames, hundred grids (numbered and blank) and open number lines.

Teachers in Richmond have been developing their own understanding of mental math strategies Screen Shot 2018-12-01 at 9.31.56 PMthrough Number Talks over the last several years and I believe it is the most used instructional routine in our K-7 classrooms.

The following is a record of some of the number talk experience in Richmond classrooms.

SD38 Number Talks panel 2016

 

 

 

Carrie Bourne and I have started creating a math video series for Richmond educators that our available on our district portal. The series is called Doing the Math Together and the videos are intended support teachers with their understanding of mental math strategies and how they might record students’ strategies during number talks. For example, there are videos in both English and French on the importance of the “making ten” strategy.

They are located in the district portal on the Mathematics page, under the blue tile titled Doing the Math Together Video Series.

Screen Shot 2018-12-01 at 9.41.15 PM

 

 

Screen Shot 2018-12-01 at 9.41.58 PM

Professional resources to support the development of mental math strategies through the development of number talks include:

Screen Shot 2018-12-01 at 9.53.51 PMScreen Shot 2018-12-01 at 9.54.48 PM                      Screen Shot 2018-12-01 at 9.54.12 PMScreen Shot 2018-12-01 at 9.54.30 PM

 

 

 

 

 

So what does it mean to be proficient with mental mathematics?

As we begin to work with the new proficiency scale across BC, we need to consider what it means to be proficient with developing, demonstrating or applying mental mathematics in relation to the grade level curricular content. As more teachers across the provinces the the scale, we will have examples of student proficiency that demonstrates initial, partial, complete and sophisticated understanding of the concepts and competencies involved. For example, a grade 2 student at the end of the year would be considered proficient in adding two-digit numbers mentally if they were able to be efficient, accurate and flexible when using two or more different mental math strategies such as decomposing or compensating.

Screen Shot 2018-09-28 at 10.02.24 PM

Some questions to consider as you plan for learning opportunities to develop the competency of using mental math strategies:

What strategies or knowledge do students already have about mental mathematics? What opportunities do students have to show and share what they know?

How can we encourage students to be metacognitive when using mental mathematics rather than just applying procedures? How can we develop the concept of efficiency and support students in choosing strategies that are a good fit for the numbers provided?

How can we help students understand the purpose and usefulness of developing mental math strategies?

What opportunities are we creating for students to use mental mathematics across other disciplines such as science or ADST?

~Janice

 

References

Do the Math in Your Head! (2005) by Cathy Seeley

Mental Mathematics beyond the Middle School (2001) by Rheta N. Rubenstein

Five Keys for Teaching Mental Math (2015) by James R. Olsen

October thinking together: estimating reasonably

Posted on: October 31st, 2018 by jnovakowski No Comments

Screen Shot 2018-10-30 at 11.35.50 PMEstimate reasonably” is one of the mathematical curricular competencies under Reasoning and Analyzing, the first strand of curricular competencies. The curricular competency of being able to estimate reasonably is a learning standard at every grade level from K-12. Because the curricular competencies in mathematics are not grade specific, they need to be connected to curricular content to be assessed and evaluated at grade level. For example, estimating reasonably:

  • at Kindergarten could be estimating within quantities to 10,
  • at grade 4 it could be computational estimation when adding and subtracting numbers to 10 000 or estimating the order of fractions along a number line using benchmarks
  • at grade 8 it could be estimating answers when calculating with fractions, estimating the surface area and volume of regular solids or estimating best buys when using coupons (financial literacy)

Curricular competencies to connect to many areas of curricular content but not all. When planning mathematical learning experiences, it is important to consider what competencies complement the content. For example, there are connections to estimating working with number concepts such as quantities, fractions and percentages as well as computational estimation, financial literacy and measurement.

Another consideration is that because this curricular competencies is the same essentially from K-12, it can be used as an access point for all students when planning for multi-age or cross-grade classes, developing IEPs and looking at class profiles.

 

What does it mean to be able to estimate reasonably?

As students begin their development of competency in estimation, they are comparing quantities as being more than or less than a known quantity. This further develops in using a referent for estimating such as if you know a handful of cubes is 10 cubes, you can use this information for estimating the total quantity of cubes in a jar. Likewise, a personal referent of knowing the size of your step that is about one metre long can help you to estimate distances. As students develop a strong sense of number, they are able to estimate within a reasonable range, knowing which numbers are too high and too low. As students become more competent with estimation and knowledgeable about quantity and other math concepts they are able to apply more abstract estimation strategies such as approximation and rounding.

 

How can we assess a student’s competence in estimating reasonably?

The Lower Mainland Mathematics Contacts network began to develop assessment tools to use with students to assess the curricular competencies. A draft of the estimating tool is here and teachers might find it a helpful starting place in thinking about how estimation develops along a continuum and the types of  ”I can” statements that can be used with students for self-assessment:

Estimating Ideas – LMMC DRAFT 2016

Screen Shot 2018-10-30 at 10.28.14 PM

This assessment tool is still in draft form as we put this project on hold while the Ministry was developing a classroom assessment framework. General information about the classroom assessment framework, developed in collaboration with teachers, can be found HERE and the information specific to mathematics can be found HERE. The mathematics classroom assessment framework includes criteria categories and descriptors as well as examples from across grade levels. The Ministry is now using a four-point proficiency scale to provide descriptive feedback to where students are in their development.

Screen Shot 2018-09-28 at 10.02.24 PM

Some resources to support competency development in estimation:

Andrew Stadel curates a website called Estimation 180 that is full of estimation tasks with a photograph as a starting point. Students are asked to consider what number would be too low and then which would be too high to develop their reasoning around what a reasonable range would be.

Many “three-act tasks” involve an element of element. Both Graham Fletcher and Dan Meyer have archived videos and examples of three-act tasks.

Steve Wyborney has developed a series of estimation tasks using photographs called Estimation Clipboard. You can download the slides and find more information about this instructional routine HERE.

For our BCAMT Reggio-Inspired Mathematics project, we have create a pedagogical content knowledge four-pager about estimating. You can download it here:

estimating-final

Unknown-4 Unknown-3Two favourite picture books that focus on estimation, with a focus on using visual referents are Great Estimations and Greater Estimations by Bruce Goldstone.

 

 

Other picture books to connect to estimation:

How Many Seeds in a Pumpkin? by Margaret McNamara

Counting on Frank by Rod Clement

Betcha! by Stuart J. Murphy

 

Some questions to consider as you plan for learning opportunities to develop the competency of estimating reasonably:

Do students understand what it means to estimate, that there is reasoning involved?

How can we connect the curricular competencies of estimating and visualizing? Are students scanning quantities and using visual referents? How can we encourage students to explain their strategies and make what they are doing in their mind visible?

What opportunities can we create for students to make adjustments to their original estimates based on new information? Are they making meaning of the situation?

What opportunities are we creating for students to think about estimation across math content areas – number, quantity, measurement, financial literacy and other areas in context?

~Janice

September thinking together: mathematics curricular competencies

Posted on: September 28th, 2018 by jnovakowski No Comments

For the 2018-19 school year, the “thinking together” series of blog posts will focus on the curricular competencies in the mathematics curriculum.  The “thinking together” series is meant to support professional learning and provoke discussion and thinking. This month will provide an overview of the curricular competenecies and then each month we will zoom in and focus on one curricular competency and examine connections to K-12 curricular content, possible learning experiences and assessment.

KDU_knowdounderstand

The curricular competencies are the “do” part of the know-do-understand (KDU) model of learning from BC’s redesigned curriculum.

The curricular competencies are intended to reflect the discipline of mathematics and highlight the practices, processes and competencies of mathematicians such as justifying, estimating, visualizing and explaining

The curricular competencies are connected the the Core Competencies of Communication, Thinking  and Personal & Social. More information about the Core Competencies can be found HERE.

 

Screen Shot 2018-09-28 at 9.45.26 PMThe curricular competencies along with the curricular content comprise the legally mandated part of the curriculum, now called learning standards. This means these competencies are required to be taught, assessed and learning achievement for these competencies is communicated to students and parents.

Something unique about the mathematics curricular competencies is that they are essentially the same from K-12. K-5 competencies are exactly the same with some slight additions in grades 6-9 and then building on what was created in K-9 for the grades 10-12 courses. Because they are the same at each grade level, to be assessed at “grade level” they need to be connected to curricular content. For example, one of the curricular competencies is “estimate reasonably” – for Kindergarten that will mean with quantities to 10, for grade 4 that could mean for quantities to 10 000 or for the measurement of perimeter using standard units and for grade 8 estimating reasonably could be practiced when operating with fractions or considering best buys when learning about financial literacy.

The new classroom assessment framework developed by BC teachers and the Ministry of Education focuses on assessing curricular competencies and can be found HERE.  A document outlining criteria categories, criteria and sample applications specific to K-9 Mathematics can be found HERE. The new four-point proficiency scale provides language to support teachers and students as they engage in classroom assessment.

Screen Shot 2018-09-28 at 10.02.24 PM

As we are begin a new school year and are thinking about year plans and overviews we might consider the following questions:

  • What opportunities do students have to learn about what it means to be a mathematician and what mathematicians do?
  • What opportunities can be created over the school year for students to name, be aware of, practice, develop and reflect on the core and curricular competencies in mathematics?
  • How can we make the core competencies and curricular competencies in mathematics visible in our classrooms and schools?
  • As we are planning for instruction and assessment, how are we being intentional about weaving together both curricular competencies and content? What curricular content areas complement and are linking to specific curricular competencies?

~Janice

number glass gems

Posted on: September 18th, 2018 by jnovakowski No Comments

One of the elements of The Studio at Grauer that teachers often notice is the collection of numerals we have in baskets and trays on our shelves. I have collected these over the years and find them in craft and scrapbooking stores, thrift stores, Habitat for Humanity ReStore, and Urban Source on Main Street in Vancouver. I am always on the lookout for numerals. Students use them in their play and investigations, ordering them, using them to label/represent their collections or sets of materials or to use as purposeful numbers in their creations (addresses, phone numbers, parts of a story, etc).

IMG_2222 IMG_2223 IMG_2224

Just to clarify some terms…

Digit - A digit is a single symbol used to make numerals. 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are the ten digits we use in our number system to make numerals.

Numeral - A numeral is a symbol that stands for a number.

Number - A number is a count or measurement that represents an idea in our mind about a quantity.    Numerals are often used to represent a number.

It is how these materials are used that leads to them becoming called numbers – they are used to connect meaning to the symbols by matching the symbol to a set or quantity or are put in order/sequence which gives meaning to the symbols. They can also be used to represent the number in an expression or equation.

I chose to make my most recent set of glass gems using the digits 0-9. This way students can put them together to create different numerals/numbers to label their representations/sets/quantities.

IMG_2215

Materials needed: large glass gems (found at Michael’s and some dollar stores), foam paintbrush, Mod Podge and number stickers or cutouts

IMG_2211

Instructions: Using the flat side of the glass gem, apply a light coat of Mod Podge and lay a numeral upside down, centred on the back of the gem. Press down and smooth surface so that the numeral adheres and there are not air bubbles between the surfaces. Let dry for a couple of minutes and then apply a coat of Mod Lodge to the entire surface of the flat side of the glass gem. Let dry for 20-30 minutes and then apply a second coat. Let dry and then they are ready to be used.

IMG_2212

We have also created materials similar to this by adhering stickers to tree cookies/slices or to smooth stones. It’s just handy to have a collection of these and students find all sorts of ways to use them.

~Janice

making truchet tiles

Posted on: September 18th, 2018 by jnovakowski No Comments

What are truchet tiles?

Truchet tiles are square tiles cut across the diagonal into two triangles of contrasting colours.

IMG_2214

In 1704, Sebastien Truchet considered all possible patterns formed by tilings of right triangles oriented at the four corners of a square. The tiles create patterns in grids of tiles. Since the original version was investigated, other variations have been created.

More information about truchet tiles can be found HERE and HERE and HERE

Once again, I have been inspired by Christopher Danielson and his lovely math materials. His version of truchet tiles can be found HERE.

I have made a simple version for an upcoming make and take afternoon with teachers in The Studio. You need square tiles, paint and a brush. I painted the tops and edges of the tiles in colour first. You could leave them naturally coloured. Once the paint was dry, I used a piece of tape to “mask” off one side, lining up the tape from corner to corner along the diagonal. Press firmly along the edge of the tape so you don’t get any paint seepage under the tape. Paint the exposed side of the tile black or other high contrasting colour. Depending on your paint, you might need a second coat. I left the tape on as it was handy to hold onto as I turned the tile over to paint the back (once the first side is dry). I chose to paint the second side all black but you could also leave it natural, or paint it a colour or paint it the same way you painted the first side. Let completely dry and then carefully peel off the tape.

Note: I used a “value” paint for this project and I didn’t like the feel of the tiles in my hands so I added a coat of Mod Podge and they are much smoother to the touch now.

IMG_2200 IMG_2202

Each tile has four orientations:

IMG_2208

Combining two tiles together and then using these in different orientations allows for many different patterns and designs. How many permutations of two tile combinations are there? ( a great spatial reasoning investigation)

These tiles are great for thinking about spatial reasoning, orientation and transformation as well as composing and decomposing shapes.

IMG_2209 IMG_2207 IMG_2204 IMG_2205 IMG_2206

Finding lots of square tiles in bulk isn’t easy. I ended up ordering 400 from a craftsperson on etsy. I used 1-inch tiles but you could make them in any size. I think you need at least 25 (5×5 grid) to create patterns using the different shape compositions you can create. They could also easily be made with construction paper or cardstock but the wood is more durable and I am not a fan of laminating (reasoning – make the materials more slippery and hard to tessellate and takes hundreds of years to decompose).

I am looking forward to seeing how students across the grades in Richmond investigate and create with these tiles.

~Janice

the new playground at Grauer: where’s the math?

Posted on: September 18th, 2018 by jnovakowski 1 Comment

IMG_1946 Last year the families, staff and community fundraised for a new playground for Grauer Elementary. Grauer is a small school with only five, six or seven divisions (depending on the year) and it is hard work for a small school to raise $60 000! It was very exciting when the school reached their goal and is such a good example of an authentic numeracy experience for students to think about. In the BC curriculum, numeracy is defined as an application of mathematics to solve or interpret an issue or problem in context.

 

 

Last Saturday, I joined staff, parents and community members coming together to install the playground (self-installation with staff support from the playground company saves thousands of dollars). As Ms Partidge and I helped to read the specifications for the installation of one of the fire poles, we commented to a couple of parents around us how much mathematics was involved in the process.

IMG_1917 IMG_1916

IMG_1920

I shared some of the photos from the installation day with the two grades 1 & 2 classes. All of these students had been to The Studio last year with me and had spent some times exploring the idea of “what is math?” so I framed this investigation as “where is the math?” I knew for some students this would create some dissonance as even young children can sometimes already have a very narrow view of what mathematics is and think that it is about counting, numbers and “plussing”. Part of this investigation was to disrupt this thinking. Of course counting, numbers and arithmetic operations are important content areas of mathematics, but they are not the only content. This investigation was one avenue to create meaning for learning mathematics, having students make connections to math beyond the walls of the classroom. The students came up with some initial ideas and we will continue to add to our thinking over the next couple of weeks.

IMG_2110

 

The students were invited to design and create playgrounds and to consider where, when and how mathematics would be applied/used. One group of students followed the kit diagrams to create a Playmobil playground set – there was lots of math talk during that collaboration! Some students chose to draw and paint a playground from their imagination and some built playgrounds with blocks and loose parts, including a playground for animals.

IMG_1988IMG_1989IMG_2055 2 IMG_2053IMG_2066 IMG_2057 2IMG_2083IMG_2111

 

After our first time together, I noticed the students were very interested in the photographs of adults using the levels and measuring tapes so I ordered some (not toy) tools to add to the construction area of The Studio. It was great to watch the students use these tools in authentic ways.

IMG_2042IMG_2049 IMG_2047IMG_2084

One of the classes had gone outside to look closely at the playground twice, creating detailed labelled diagrams or maps of the playground.

IMG_2002 IMG_2075 2 IMG_2109 2

We extended this experience in The Studio by asking the students to create “math maps” indicating “where’s the math?” on recordings of their playground creations.

IMG_2090 IMG_2106

And what are are we assessing in terms of mathematics? These types of investigations and explorations lend themselves to informal formative assessment and gives us a sense of mathematical language the students have and where students are along a learning trajectory around different concepts and skills such as spatial reasoning, comparison of size and quantities and measuring. This type of assessment, that focuses on observing and listening to the students’ play and math talk is so important at this time of year and informs our instructional plans and focus for the fall.

When students engage in this type of learning through materials we make their learning visible through a sharing session at the end of our time together and capturing photographs, videos and students’ thinking so that we can revisit and reflect on the experiences, make connections to new learning experiences and consider questions for further investigation. The following are examples of documentation panels that we create to post in The Studio to help make our learning visible.

Grauer_playground1_Sept2018 copy

Grauer_playground2_Sept2018

I’m looking forward to seeing where the students take us next on this investigation.

~Janice

summer professional learning and reading 2018

Posted on: June 29th, 2018 by jnovakowski

Although summer is a “break” from the schedules and routines of teaching, it has always also been a time of learning for me. Whether it be taking course work or having the time to read deeply or attend professional learning events, I find the summer a great time to learn new things and both reflect on and rejuvenate my teaching practice. Of course, in order to really refresh, I do take some time away from professional thinking by reading novels, memoirs, travel guides and cookbooks! I try and learn new things and am currently enjoying learning about different types of weaving, dyeing using natural materials, using new art techniques and focusing on developing my knowledge around local plants All of these personal interests do tend to find their way into my professional work though as well!

One learning goal I have for myself is to become more familiar and fluent with using desmos. Desmos is an online graphing application (and available as an app as well) but has so many possibilities for supporting mathematical thinking for elementary and secondary students. The desmos website is full of examples and ideas for student projects as well as resources for teachers. I feel I just have a beginning understanding of what desmos has to offer so am looking forward to digging in and playing with it over the summer.

Professional Reading

My first summer professional reading stack of the summer!

IMG_9691

Engaging Children: Igniting a Drive for Deeper Learning K-8 by Ellin Oliver Keene

Lifelong Kindergarten: Cultivating Creativity through Projects, Passion, Peers, and Play by Mitchel Resnick and Ken Robinson

Play Matters by Miguel Sicart

Arithmetic by Paul Lockhart

Give Me Five!: Five Coach-Teacher-Principal Collaborations that Promote Mathematical Success by Janice Bradley

Essential Assessment:  Six Tenets for Bringing Hope, Efficacy, and Achievement to the Classroom (Deepen Teachers’ Understanding of Assessment to Meet Standards and Generate a Culture of Learning) by Cassandra Erkens and Tom Schimmer

Softening the Edges: Assessment Practices that Honor K-12 Teachers and Learners by Katie White

I have also ordered these two need mathematics book through the NCTM and the ATM.

Screen Shot 2018-06-28 at 9.40.42 PM Screen Shot 2018-06-28 at 9.39.55 PM

An area of focus in our district will continue to be assessment. Continuous assessment that leads to responsive, intentional instructional choices is a practice that is woven throughout series I do around mathematics professional learning. Two books that I am going to revisit this summer as I begin to plan professional learning experiences for next year include:

IMG_9291

 

Rethinking Letter Grades is a book by Canadian authors with local examples and I appreciate the “triangle” from this book that shares that in order to have authentic evidence of learning you need three types of assessment data – observations, conversations/interviews and products (which includes projects, creations, writing, drawing, diagrams, quizzes, tests).  The Formative Five is a mathematics specific book focusing on five formative assessment practices.

 

 

New assessment reads for this summer include the following:

IMG_9296 IMG_9549

Katie White, author of Softening the Edges, will be a featured speaker at our Curriculum Implementation Day in Richmond next year. Essential Assessment was a book recommended by Angie Calleberg of the BC Ministry of Education as she said the Ministry used this book to inform assessment projects in the province. And although I do have some concerns about Hattie’s use of statistics and his meta analysis of meta analysis studies, I know his new book will come up in professional conversations around assessment so want to have a quick read through it.

 

Professional Learning Opportunities

For Richmond educators, professional learning opportunities are listed within the portal. Go to Learn 38 then to the Professional Learning tile to find both internal and external events.

Screen Shot 2018-06-29 at 12.02.59 AM

For this year’s BCTF PSA Day in October, consider attending the Northwest Mathematics Conference in Whistler. Information about speakers, accommodation and registration is now available here:

Northwest Mathematics Conference website 

Also in October, the Vancouver Reggio Association is hosting Tiziana Filippini, a pedagogista from Reggio Emilia, Italy. More information available here:

Vancouver Reggio Association – Tiziana Filippini – October 2018 

A free professional learning event about coding for teachers is being hosted in Vancouver this summer, sponsored by the Government of Canada:

Teachers Learning Code – Vancouver – July 24-26 2018

Lots of districts in BC offer professional learning events at the end of the summer so check Twitter, Facebook, the BCTF site and district websites for more information.

For those of you interested in building your own knowledge of Indigenous perspective, culture and content, Talasay Tours offers some grant opportunities:

Talasay Tours – Authentic Cultural and Eco Experiences

And the Museum of Anthropology at UBC currently has an exhibit highlighting six cultures from across BC;

MOA – Culture at the Centre

 

Have a lovely summer – a time for adventures, rejuvenating and learning new things!

~Janice