Archive for the ‘intermediate’ Category

intermediate numeracy project: what is numeracy?

Posted on: November 19th, 2019 by jnovakowski

Numeracy is a K-12 focus in our school district. Numeracy and literacy are considered the two pillars of the BC curriculum and new Graduation Assessments in both Numeracy and Literacy are now in place in our province. With teachers, students and families that I work with, I explain the distinction between mathematics and numeracy. Mathematics is the discipline, the body of knowledge, content and processes/competencies. Numeracy is using mathematics to interpret and understand issues or solve contextual problems. Our goal is to develop both numerate citizens that use mathematics to make sense of the world around them.

One particular area of focus in our district is developing numeracy and related tasks with teachers and students in grades 6-9 as a way to bridge elementary and secondary learning experiences. One clsss that I am spending time with on a year-long focus around numeracy is the grades 5&6&7 class at Quilchena with teachers Samantha Davis and Jen Yager.

I visited the class at the end of September to introduce what numeracy is. We used the definition of numeracy from the BC Ministry of Education site and shared it with students and used the “exploding the sentence” strategy as a way for them to understand the meaning of numeracy.

numeracy_definition

IMG_7862

The teachers had told me one of the current interests of the students was the climate strike. This was connected to their class focus on investigating youth who are agents of change and following the work of Greta Thunberg. I introduced the use of infographics to convey information and shared the following two images with the students. We discussed what we needed to know and do in order to be able to interpret the images and how different visuals can convey the same information but have different impacts on how we connect to the data and information.

IMG_7866

IMG_7867

At our next time together in October, we will think together through a numeracy task.

~Janice

world tessellation day 2019

Posted on: July 4th, 2019 by jnovakowski

World Tessellation Day is celebrated on June 17 in honour of M.C. Escher’s birthday and was created by author Emily Grosvenor of Oregon. More information can be found HERE. Emily Grosvenor wrote a book about a little girl named Tessa who saw shapes, patterns and designs in the world around here. The book Tessalation was launched on Kickstarter and I was happy to support it. In celebration of the book launch, the author asked some of the supporters to do blog posts about the book and be part of a blog tour. The blog post I did can be found HERE.

World Tessellation Day was promoted in our district with connections made to our BC mathematics curriculum and it was great to watch social media posts appear highlighting tessellations! You can find some of these posts by following the hashtag #WorldTessellationDay – I have shared some posts from Richmond teachers below.

Screen Shot 2019-07-04 at 12.16.25 AM

 Screen Shot 2019-07-04 at 12.30.06 AM Screen Shot 2019-07-04 at 12.29.26 AM Screen Shot 2019-07-04 at 12.28.49 AM Screen Shot 2019-07-04 at 12.28.03 AM

This year, the Thursday before World Tessellation Day, I invited students to explore tessellations through materials in The Studio at Grauer after we looked at some of the pages of the book Tessalation. The investigation prompt was What can you find out about tessellations? Noticing the materials I put out, I need to remember to use some non-regular polygons as well.

Screen Shot 2019-07-04 at 10.03.03 AM IMG_3539 IMG_3516 IMG_3519

IMG_3525 IMG_3522

On June 17, our district’s Math Play Space featured materials that tessellate and we set up tables at the Brighouse Public Library during after school hours. Many children and families visited to investigate with the materials.

IMG_3647 IMG_3629 IMG_3649

IMG_3633

IMG_3642

IMG_3625 IMG_3628

I’m looking forward to making World Tessellation an annual public event not just in our schools but also in other places in our community!

~Janice

 

outdoor classroom day: November 1 2018 and May 23 2019

Posted on: July 3rd, 2019 by jnovakowski

Outdoor Classroom Day is an international initiative to promote the importance of children experiencing the outdoors. The event began in London, England in 2012, grew internationally in 2015 and became a global project in 2016 with the support of educators, environmentalists, play experts, NGOs, Project Dirt and Unilever. The organization supports and shares research around the benefits of playing and learning outdoors. More information can be found on the website HERE.

We participated in our first Outdoor Classroom Day on November 1 with three classes at Grauer. Each class began with some time in The Studio where we shared ideas about where and how we might see and experience mathematics outdoors. I shared a different book of images with each class to inspire their mathematical thinking.

IMG_4388

IMG_4255 2

 

It was pouring rain most of the day, but being the day after Hallowe’en it was actually a good day to be outside and moving.

IMG_4271 IMG_4256

Each class took on different tasks with the grades 1&2 classes looking for and thinking about estimating, counting, size (measuring) and shape.

IMG_4280 IMG_4278 IMG_4300 IMG_4319 IMG_4321 IMG_4326 IMG_4338

The grades 3&4 class worked in small groups with a task card prompting them to search for things outside involving mathematical ideas such as symmetry, fractions and measurement.IMG_4370 IMG_4377

As we were coming inside, one of the grade 2 students said, “This was the best math day ever!”

The next Outdoor Classroom Day for this school year was May 23. The grades 3 and older classes at Grauer were at the district track meet, so the three K-2 classes spent the day outside together. We took our new Outdoor Studio Wagon with us outside and it was filled with materials, tools and resources to support and inspire our mathematical thinking.

IMG_2784 We began our morning by finding out own counting collections outdoors and then recorded our counts in different ways. Some students gathered leaves, twigs or pieces of park to group and count while others found multiples in plants such as buttercups (counting the flowers by 1s and the petals by 5s) and clover (counting the leaves by groups of 3s).

IMG_2760

IMG_2758

IMG_2766 IMG_2771

IMG_2763 IMG_2761

IMG_2779 IMG_2778

After recess, we considered different types of branding and growing patterns that we noticed in the growth of trees, plants, leaves, flowers and roots and captured these patterns with clay prints and plant prints using rubber mallets.

IMG_2785

IMG_2819

 

IMG_2820

IMG_2812

IMG_2797

IMG_2790

IMG_2789

IMG_2817

Here are the contents in the Outdoor Studio Wagon:

SD38_Outdoor_Studio_Wagon_list

 

The next Outdoor Classroom Day is November 7 2019. You can sign up HERE.

~Janice

 

 

 

 

big mathematical ideas for grades 6-9 2019

Posted on: May 30th, 2019 by jnovakowski

Similar to the K-2 and grades 3-5 big math ideas series, this year we offered a grades 6-9 series. For a variety of reasons, we were only able to hold one session in April. We focused on the big idea of computational fluency.

Screen Shot 2019-05-30 at 1.17.36 PM Screen Shot 2019-05-30 at 1.17.57 PM Screen Shot 2019-05-30 at 1.18.12 PM

Each teacher received the book Making Number Talks Matter by Cathy Humphreys and Ruth Parker. The focus of number talks is to develop computational fluency through practice of and discussion of mental math strategies for number operations.

IMG_1637

Another focus of our session was inclusive instructional routines that develop number sense, computational fluency and curricular competencies such as reasoning.

Screen Shot 2019-05-30 at 10.41.28 PM Screen Shot 2019-05-30 at 10.41.05 PM

District posters are available for routines such as Splat, Number Talks, and Which One Doesn’t Belong. They can be found in English and French on this blog on the top of the site. An example of one of these posters is:

Screen Shot 2019-05-30 at 10.44.11 PM

At grades 6-9, developing and extending computational fluency with whole numbers across all four operations is an essential, foundational component of our BC mathematics curriculum. At this grade range, students are also connecting and transferring many of these strategies to operations with decimal numbers, integers and fractions.

Looking forward to next year, it is our hope to have more opportunities for teachers to bridge teaching and learning experiences from elementary to secondary.

~Janice

May thinking together: explain and justify mathematical ideas and decisions

Posted on: May 26th, 2019 by jnovakowski

This month’s curricular competency focus is explain and justify mathematical ideas and decisions. This curricular competency is the same across grades K-12 and is included in the Grades 10-12 courses with the addition of “in many ways“.

Screen Shot 2019-05-11 at 11.55.48 PM

This competency falls under the organizer of  “Communicating and Representing” is also connected to the Core Competency of Communication, particularly the aspect of explaining and reflecting on experiences.

Elaborations are suggestions for educators to consider as they plan for developing this curricular competency:

  • mathematical arguments

Screen Shot 2019-05-11 at 11.58.35 PM

What is a mathematical argument?

A mathematical argument is the debate and discussion of a mathematical problem or task. This involves the explanation and justification of the reasoning, problem-solving process and the solution. As stated by Small (2017), the ability to create a sound mathematical argument is developed over time.

A common instructional routine in our district is Number Talks. During this routine, students are asked to share their mental math strategies for solving questions involving number operations. Part of this routine is defending or “proving” their solution through their strategy explanation. Other students may agree with, build on or argue with the strategies used. A focus of this routine is both building mathematical discourse structures as well as building the listeners, connectors and reflectors needed in a mathematical community. During Number Talks, students listen to each others’ explanations and justifications and then also use mathematical language to communicate their own mathematical arguments. Before orally sharing their explanations to the whole group, students are often given the opportunity to turn and talk, or think in their head to formulate and rehearse their explanations.

Screen Shot 2019-05-26 at 8.46.00 PM

Screen Shot 2019-05-26 at 8.45.21 PM

In the book Teaching Mathematical Thinking, author Marian Small (2017) suggests the language that develops during mathematical argumentation and discourse may sound like this:

“I agree with ______ because _______.”

“I didn’t understand why you __________.”

“I disagree with ___________ because ____________.”

“I wonder why you _____________.”

“What if you had _____________.”

Small (2017) provides some examples of open question that nurture mathematical argumentation. For example, for grades 3-5 students:

Liz says that when you multiply two numbers, the answer is more likely to be even than odd.

Do you agree or not? Why?

And for grades 6-8:

A store employee noticed that an item’s price had been reduced by 30% and realized it was a mistake. So she added 30% back to the reduced price. Avery said the price is the same as it used to be but Zahra disagreed.

With whom do you agree? Why?

What tasks like these are we presenting to students to intentionally nurture and practice the development of explaining and justifying mathematical ideas and decision-making?

Mathematician Dan Finkel shares the importance of conjectures and counterexamples in his playful instructional approach. More information can be found on his website mathforlove.com

Screen Shot 2019-05-26 at 9.25.19 PM

 

Screen Shot 2019-05-26 at 9.26.38 PM

 

In the following example from Dan, a student made a conjecture that if you multiply both factors by two, the product will stay the same. Can you think of a counterexample that disproves this?

Screen Shot 2019-05-26 at 9.27.59 PM

In their book But Why Does It Work? Mathematical Argumentation in the Elementary Classroom (2017), authors Susan Jo Russell et al share an efficient teaching model focused on mathematical argument for developing the ability of students to justify their thinking and engage with the reasoning of others. Their model supports students in:

  • noticing relationships across sets of problems, expressions or equations
  • articulating a claim about what they notice
  • investigating their claim through representations such as manipulatives, diagrams, or story contexts
  • using their representation to demonstrate and explain why their claim must be true or not
  • extending their thinking from one operation to another

In their book Teaching with Mathematical Argument (2018), authors Stylianou and Blanton suggest that a focus on justification and explanation of thinking can celebrate the diversity of thinking within our classrooms. From their book:

“How can argumentation be a goal and an expectation for all students? One strategy is to embrace students’ use of diverse strategies. This diversity can then be used to plan cognitively demanding instruction that includes argumentation and that allows all learners to build from their own thinking and access their peers’ thinking to develop their understanding of new concepts. Rich, open tasks that invite argumentation are challenging because of their open nature. However, their openness also allows access to students who struggle in mathematics. Being open implies having more than one entry point, which makes such tasks accessible to students who often struggle to follow one particular procedure.”

By honouring the diverse thinking of the learners in our classrooms, we are also nurturing the important idea that there isn’t “one right way” to do or think about mathematics. Creating entry points for all students to explain and justify mathematical ideas is part of creating a safe mathematical community for all.

Some questions to consider as you plan for learning opportunities to develop the competency of explaining and justifying mathematical ideas and decisions:

How do we support students and families in understanding that explaining and justifying your answers and processes is an important part of mathematics?

What problems and tasks are we presenting to students to intentionally nurture and practice the development of explaining and justifying mathematical ideas and decision-making?

What visual and language supports might support students as they engage in mathematical discourse and argumentation?

What opportunities do students have to notice patterns and relationships, make conjectures and generalizations across mathematical concepts? What ways could they share and explain their mathematical ideas by using materials, pictures or diagrams, stories or contexts or numbers and symbols?

How might technology provide access for students or transform the way they are able to explain and justify their mathematical ideas and decisions?

~Janice

References:

Screen Shot 2019-05-12 at 12.47.40 AM

But Why Does It Work? Mathematical Argument in the Elementary Classroom

by Susan Jo Russell, Deborah Schifter, Virginia Bastable, Traci Higgins, Reva Kasman

Heinemann Publishers, 2017

 

 

Screen Shot 2019-05-12 at 12.59.23 AM

Teaching with Mathematical Argument: Strategies for Supporting Everyday Instruction

by Despina Stylianou and Maria Blanton

Heinemann Publishers,  2018

 

 

Screen Shot 2019-05-26 at 7.58.18 PMTeaching Mathematical Thinking: Tasks and Questions to Strengthen Practices and Processes

by Marian Small

Teachers College Press/Nelson, 2017

 

 

Promoting Mathematical Argumentation by C. Ramsey and W. Langrall (2016). Teaching Children Mathematics (volume 22), number 7, pages 412-419.

April thinking together: communicate mathematical thinking in many ways

Posted on: April 30th, 2019 by jnovakowski

This month’s curricular competency focus is communicate mathematical thinking in many ways. This curricular competency is the same across grades K-9 and is included in the Grades 10-12 courses as “explain and justify mathematical ideas and decisions in many ways“.

This competency falls under the organizer of  “Communicating and Representing” which includes the following related competencies:

Screen Shot 2019-04-30 at 7.44.48 PM

Elaborations are suggestions for educators to consider as they plan for developing this curricular competency:

  • communicate using concrete, pictorial and symbolic forms
  • use spoken or written language to express, describe, explain, justify and apply mathematical ideas
  • use technology for communication purposes such as screencasting and digital photography and videography

Screen Shot 2019-04-30 at 7.45.00 PM

There are clear connections between the Core Competency of Communication with this grouping of curricular competencies. A one-page table showing the language of both types of competencies can be downloaded here:

SD38 K-5 Math Communication_Avenir

Screen Shot 2019-04-30 at 7.54.56 PM

An important part of communicating mathematical thinking in many ways is to be able to use different forms such as concrete (materials or math manipulatives), pictorial (drawings, diagrams, tallies) or symbolic forms (numerals and symbols).

An example from primary classrooms of how students may move from concrete to symbolic notations is with the use of materials such as base ten blocks. Students may communicate their understanding of numbers by creating that number with materials and then recording the symbolic notation. The following are some examples from a grades 2&3 classroom at Cook Elementary that show how children used concrete, pictorial and symbolic forms to help them solve and communicate their solutions for mathematical problems.

IMG_0834 IMG_8626

As students begin to understand a concept, such as multiplication, they usually construct a representation with materials to build understanding. These representation may then be recorded pictorially and then labels are added using symbolic notation. This fluency between forms is important and the connections between representations is essential to conceptual understanding. A student may be presented with a symbolic form (such as an equation) and asked to show a concrete form or pictorial form that “matches”. The following are examples from a grades 2&3 classroom at Tomsett Elementary.

IMG_7670 2  IMG_7666

 

 

 

IMG_7879

For our intermediate and secondary students, it is still important to be using concrete materials, especially when students are developing their understanding of a new concept such as fractions, decimals, or integers. The following are examples from a grades 4&5 classroom at Homma Elementary

Screen Shot 2019-04-30 at 7.29.46 PM Screen Shot 2019-04-30 at 7.30.10 PM

and also more fraction investigations with a grades 4&5 class at Steves.

Screen Shot 2019-04-30 at 7.32.16 PM

In our curriculum, the terms “concrete, pictorial and symbolic” are used in ways for students to think about concepts but also to communicate and represent their thinking. In some other jurisdictions around the world, the term CRA is used to reference an instructional approach to concept development, standing for Concrete, Representational and Abstract. More information can be found HERE. There is some overlap between the the CRA framework and how our curriculum focuses on concrete, pictorial and symbolic communication of mathematical thinking and understanding.

Another area of focus in our district is using iPad technology for students to communicate their thinking and learning. One of the most common uses of the devices in math is to use screen casting apps such as doceri, ShowMe, Explain Everything or 30Hands. When students screencast, they can take a photograph or video of what they are doing and then annotate with arrows, words etc and then orally describe their problem-solving process or thinking. For example, in a grade 8 class at Hugh Boyd Secondary, students took images of number balances they used to develop their understanding of equivalence in algebraic equations and then communicated their thinking by orally explaining their understanding.

Screen Shot 2019-04-30 at 8.27.38 PM Screen Shot 2019-04-30 at 8.27.45 PM

 

Some questions to consider as you plan for learning opportunities to develop the competency of communicating mathematical thinking in many ways:

How is the core competency of communication noticed, named and nurtured during the teaching and learning of mathematics?

What different materials are students learning to use, think through and represent with? What materials are mathematically structured and what other types of materials might we offer to students?

What opportunities are we providing for students to share their thinking in different ways? Are students provided with choices and is there a balance in the different ways students can communicate their mathematical thinking?

How might technology provide access for students or transform the way they are able to communicate their mathematical thinking?

 ~Janice

March thinking together: engage in problem-solving experiences connected with place, story and cultural practices and perspectives

Posted on: March 14th, 2019 by jnovakowski

This month’s curricular competency focus is engage in problem-solving experiences that are connected to place, story, cultural practices and perspectives relevant to local First Peoples communities, the local community, and other other cultures. This curricular competency is the same across grades K-12 and courses and falls under the organizer of “Understanding and Solving” which suggest the focus of using contextual and meaningful experiences to support mathematical understanding.

Elaborations are suggestions for educators to consider as they plan for developing this curricular competency:

  • in daily activities, local and traditional practices, the environment, popular media and news events cross-curricular integration
  • have students pose and solve problems or ask questions connected to place, stories and cultural practices

Screen Shot 2019-03-08 at 12.52.55 PM

The focus and thinking behind this curricular competency are the ideas of authenticity, meaningfulness, engagement and connectedness. Not all mathematics learning needs be contextualized or connected to “real life” but for many students who may see math as something that they do at school between 9 and 10am and don’t yet see the relevance of the math they are learning, providing tasks and problems that connect to place, community and culture may support their mathematical thinking and learning and broaden their understanding and appreciation for what math is and how it can be experienced. Experiential and holistic learning are foundational to the First Peoples Principles of Learning and these are considerations for all learners. The First Peoples Principles of Learning also remind of us of the importance of connecting learning through place and story, working with others and developing a self of self, family, community and culture. This curricular competency is aligned with the Personal and Social Core Competency – positive personal and cultural identity, personal awareness and responsibility and social responsibility.

Some resources to consider:

Messy Maths by Juliet Robertson (elementary resource for taking math learning outdoors)

Tluuwaay ‘Waadluxan Mathematical Adventures edited by Dr. Cynthia Nicol and Joanne Yovanovich (mathematical adventures from Haida Gwaii developed by community members, elders and educators)

BC Numeracy Network – Connecting Community, Culture and Place

First Peoples Mathematics 8&9 developed by FNESC – this teacher-created resource is being revised to reflect the current BC mathematics curriculum and provide more learning experiences across grades and disciplines.

 

Blog posts from this site with related information:

Place-Based Mathematics

Place-Based Mathematical Inquiry

Primary Study Group 2018-2019 – Outdoors Math

Indigenous Content and Perspectives in Math

 

Some questions to consider as you plan for learning opportunities to develop the competency of engaging in problem-solving experiences connected to place, story and cultural practices and perspectives:

How does place/land/environment inspire mathematical thinking? What potential numeracy or problem-solving tasks emerge when we think about local land-based contexts?

What problems or issues are facing the local community? How might mathematics help us to think about and understand these problems or issues? What information or data might be collected and shared? How can we use different tools to communicate mathematical information to create an opportunity for discussion and engaging in a problem-solving process?

How does Indigenous knowledge connect, intersect and support the curricular competencies and content in our mathematics curriculum? Who is a knowledge holder in your local First Nations community that you could learn from and with? 

What are authentic resources? What stories and cultural practices are public and able to be shared? What doe it mean to use authentic resources, stories, and elements of culture in our mathematics teaching? How are resources specific to a local context? Who can we go to to find out more information and learn about local protocols?

What cultural practices in your community have mathematics embedded in them? How might we use the structure of “notice, name and nurture” to expand awareness of what mathematics is and how it can be experienced?

How can stories help us think about the passage of time, relationships, connections and mathematical structures, actions and models?

~Janice

big mathematical ideas for grades 3-5 2019

Posted on: March 13th, 2019 by jnovakowski

This is the sixth year of this after school series that focuses on the big mathematical ideas encountered by teachers working with students in grades 3-5. This year this group met three times during term three.

Our first session was on January 17. Each teacher received the professional resource Number Sense Routines by Jessica Shumway.

IMG_7295

IMG_7296

The focus of our first session was on multiplicative thinking and computational fluency.

Screen Shot 2019-03-13 at 10.24.11 PM

We began by working on a math problem together, from the book, and considered the different ways our students might engage with the mathematics.

IMG_7303

 

And then looked at visual routines from the book that support multiplicative thinking through spatial structuring.IMG_7304

We also considered games that provide purposeful practice for developing computational fluency and reasoning around multiplication, such as the array-based game, How Close to 100? from Mindset Mathematics.

IMG_7297 IMG_7298

IMG_7299

 

Our second session was on February 7 and after sharing the visual routines that we tried with our students, we discussed the big ideas around decimal numbers.

IMG_7972

IMG_7970

IMG_7974

IMG_7976

IMG_7975Our focus from the book was using number routines such as Today’s Number as well as Number Talks with fractions and decimal numbers. We also connected using visual supports such as 10×10 grids in games to practice decimal computation and develop understanding of decimal numbers in both fractional and place value-based ways.

Some games and a recording sheet for thinking about decimal numbers from the session can be downloaded here:

decimal_number_practice

Our third session was held on March 7 during which we focused on the big idea of area, connecting this concept to both multiplication and the visual routines we had learned earlier in the series (arrays, spatial structuring, decomposing into parts).

Screen Shot 2019-03-13 at 10.31.50 PM

We also focused on the instructional routine of notice and wonder and how it can be used to have students make sense of a mathematical situation or problem as well as create an opportunity for students to ask questions that can lead into mathematical investigations.

IMG_9143 IMG_9142

Annie Fetter of the Math Forum has made many math teachers aware of Notice and Wonder over the years and an overview document is available:

Intro I Notice I Wonder NCTM

For this session, a new SD38 math instructional routine poster was created and it is available in both English and French:

notice wonder poster

notice wonder poster french

These posters are also all available on this blog, under the poster tab at the top!

Thank you to Grauer Elementary for the use of The Nest to host this series!

~Janice

 

February thinking together: develop, use and apply multiple strategies to solve problems

Posted on: February 28th, 2019 by jnovakowski

This month’s curricular competency focus is using multiple strategies to solve problems. There is a development in how strategies are used from K-12 and for what types of problems.

In K-5 the curricular competency language is “develop and use multiple strategies to engage in problem solving” with elaborations including examples of strategies involving visual, oral and symbolic forms and through play and experimentation.

Screen Shot 2019-02-17 at 1.09.11 AM

 

In K-5, we support students in developing a repertoire of strategies to draw upon and we encourage the practice of choosing and using these strategies in different problem solving experiences ranging  from structured word/story problems, open problems or questions or problem-based or numeracy tasks. During the development of strategies, students will notice similar strategies being shared by their classmates and these strategies might be named such as “looking for a pattern” or “acting it out” or “represent with materials”. Naming strategies such as these helps to enhance mathematical communication, discourse and community in the classroom when discussing mathematical problems.

As with many of the curricular competencies in math, there are slight variations between grade bands, showing the developing application and demonstration of these competencies.

Screen Shot 2019-02-17 at 1.10.09 AM

In grades 6-9 the curricular competency language is “apply multiple strategies to solve problems in both abstract and contextualized situations” with elaborations including examples of strategies focusing on those that are familiar, personal or from other cultures. Students in this grade range are refining and reflecting on their own use of problem solving strategies and we encourage students to listen and learn from their peers in order to consider new ways to think about a mathematics problem.

 

Screen Shot 2019-02-17 at 1.10.45 AM

In grade 10 the curricular competency language is “apply flexible and strategic approaches to solve problems” with elaborations such as deciding what tools to use to solve a problem as choosing from a list of known strategies such as guess and check, solve a simpler problem, model, use a chart, role-play or use diagrams. The numeracy processes for engaging in numeracy tasks are related to this competency at the secondary level – interpret, apply, solve, analyze and communicate.

 

Although specific strategies such as “guess and check” or “solve a simpler problem” are not named specifically in the elaborations from K-9, it is these more formally named strategies that are developed with understanding, meaning and purpose over time. Alternative or personally derived or preferred strategies may also be developed by students and shared with their solutions, supported with their reasoning and explanations to demonstrate their understanding of the problem and the mathematics involved.

Many math educators and researchers have found over decades of research and classroom experiences that students who have multiple strategies or approaches to problems are more fluent and flexible in their thinking. An important aspect of using multiple strategies is knowing when a particularly strategy is helpful or efficient. Not all strategies are suitable for all problems and this an important part of the progression of developing this competency in mathematics  One particularly effective instructional strategy is engaging students in comparing the strategies they used to solve a problem. Researchers have recently examined the cognitive process of comparison and how it supports learning in mathematics. The sharing and comparison of multiple student strategies for a problem was found to be particularly effective for developing procedural flexibility across students and to support conceptual and procedural knowledge for students with some background knowledge around one of the strategies compared. (Durkin et al, 2017 – referenced below). Based on their findings, the researchers share some significant instructional moves that will support student learning:

1) regular and frequent comparison of  alternative strategies

2) judicious selection of strategies and problems to compare

3) carefully designed visual presentation of the multiple strategies

4) small group and whole class discussions around comparison of strategies with a focus on similarities, differences, affordances and constraints

 

Examples of what the use of multiple strategies might look like in the classroom include:

Primary: The teacher reads the story The Frog in the Bog and asks the grade 1 students to figure out how many critters are in the frog’s tummy. The teacher invites the students to think about how they might solve this problem and what they will need. The students work on their own or with a partner to solve the problem through building with materials, acting it out, drawing or recording with tally marks and numbers. Some students accompany their solutions with an equation and one student records his ideas orally using iPad technology. As the students are working, the teacher pauses the students and asks them to walk around the room and see what their classmates are doing and see if they can find a new idea for their own work. After solving the problem, the students prepare to share their solutions and strategies with the class and the teacher gathers the students on the carpet and chooses some students who used different strategies to share. The teacher records the strategies on the chart and then asks the students if they have a new idea for a strategy for the next time they do a problem like this.

Screen Shot 2019-02-27 at 10.38.14 PM

Intermediate: In a grades 6&7 class, the teacher projects the first three figures of a visual pattern on the class whiteboard (examples on visual patterns.org). The teacher asks the students what they notice about the figures and records some of the students’ responses and then asks them to consider what comes next. Students are asked to consider what strategies or approaches might help them think about this. After some thinking time, the teacher asks the students to turn and talk with one or two other students and compare each others’ strategies and consider new ways of thinking about the problem. The teacher then invites the students to apply more than one strategy to solve what figure 43 will look like. The students share their solutions and strategies with the teacher recording the different strategies through different representations such as a drawing, a narrative, an expression, a table or a graph. The teacher then facilitates a discussion comparing the representations and how they are connected and support the understanding of the problem.

(with thanks to Fawn Nguyen and Marc Garneau for the inspiration)

Screen Shot 2019-02-28 at 12.25.46 AM

Secondary: Students in a grade 10 class are assigned to be in random groups of three and work on a numeracy task on a whiteboard or window around the classroom. The class has been learning about prime factorization and the teacher shares the following problem orally:

Prime numbers have exactly two factors – 1 and itself. Which numbers have exactly 3 factors? Exactly 4 factors? And so on. Given any positive integer, n, how can you tell exactly how many factors it has?

Each group of students begins talking and sharing their ideas. Students begin to record their thinking, using diagrams, charts, numbers, etc. and build on and challenge each others’ thinking about the problem and approaches to solving it. Students move around the room and watch or engage with other groups. The teacher facilitates students’ sharing of solutions and approaches to the problem and then provides a set of related problems for students to continue practicing with, either in their groups or independently.

Numeracy tasks such as this one can be found HERE and HERE and HERE.

(with thanks to Mike Pruner and Dr. Peter Liljedahl for the thinking classroom inspiration)

 

Some questions to consider as you plan for learning opportunities to develop the competency of using multiple strategies and approaches to solve problems:

What strategies and approaches do you notice your students using? Are some students “stuck” using the same strategy? How could you nudge students to try different strategies and approaches?

What different types and structures of math problems are being provided to your students? Are students flexible with their strategy choice or approach, making decisions based on the problem they are working on?

How might you and your students record their strategies and approaches to make this thinking visible?

What opportunities are we creating for students to watch and listen to others think through, choose and apply strategies and solve problems? How might this support their learning?

What tools, materials and resources do students have access to to support choice and application of different strategies and approaches when solving math problems?

~Janice

References

Elementary and Middle School Mathematics: Teaching Developmentally by John van de Walle et al

Teaching Mathematics through Problem-Solving (NCTM) edited by Frank Lester and Randall Charles

Why Is Teaching With Problem Solving Important to Student Learning (NCTM Research Brief)

Durkin, K., Star, Jon. R. & Rittle-Johnson, B. (2017) Using Comparison of Multiple Strategies in the Mathematics Classroom: Lessons Learned and Next Steps, ZDM: The International Journal on Matheamtics Education 49(4), 585-597.

 

January thinking together: use technology to explore mathematics

Posted on: January 31st, 2019 by jnovakowski

This month’s focus is on the curricular competency: use technology to explore mathematics.

This is the language that is used from K-5 with the accompanying elaborations:

Screen Shot 2019-01-24 at 11.39.31 PM

 Screen Shot 2019-01-24 at 11.40.31 PM 2

This is the language of the learning standard for grades 6-9:

Screen Shot 2019-01-24 at 11.40.12 PM

And this is the language of the learning standard in grades 10-12, with elaborations that are more course-specific:

Screen Shot 2019-01-24 at 11.41.05 PM

Screen Shot 2019-01-24 at 11.41.19 PM 2

 

 

 

 

 

There are many questions that arise for educators and parents around the use of technology. In some contexts the use of personal devices becomes a management and liability concern for schools and in other contexts there are access and equity concerns around technology. In terms of pedagogy and appropriate use, there is always a professional judgement made as to the suitable use of technology and whether it is enhancing the learning experience in some way. Technology is not to be used just for the sake of using technology but instead, choices are made around technology use based on intention, context and purpose. In mathematics, there are many applications that allow for students to visualize and experience mathematics in ways they would not otherwise be able to (one example is the use of Desmos). Another aspect of using technology in mathematics teaching is as a tool to represent and share students’ learning. There are many accessibility features available on devices for students who may need different tools to support their communication or recording of ideas. Technology can be a powerful tool to support inclusive practices, choice and differentiation.

When we look at BC’s redesigned curriculum for information on the role of technology within a learning environment, the following is shared:

ICT-enabled learning environments

Students need opportunities to develop the competencies required to use current and emerging technologies effectively in all aspects of their learning and life. Technology can facilitate collaboration between students, educators, parents, and classrooms while also providing schools with rich online resources. Today’s technology enables classrooms, communities, and experts around the world to share digitally in a learning experience, wherever they may be.

source: https://curriculum.gov.bc.ca/curriculum/overview

E-Portfolios

Communication with families (and others) is an important part of our education system and in our district we are embracing e-portfolios and the use of technology to share and communicate student learning and progress with families. Students are able to take photographs or videos and upload them to their portfolios and annotate their posts with information or self-assessment about their learning. The teacher is also able to add descriptive feedback that is shared between teacher, student and family.

Screencasting

As a classroom and resource teacher and teacher-librarian, one of my favourite uses of technology was the use of screen casting apps. These apps allow students to take a photograph of the math they have been building, creating, diagramming or recording and then use annotation tools such as text labelling and arrows to explain their thinking as well as using audio tools to narrate their thinking. I found that many students were more confident and detailed in sharing their learning through these apps that what I might have found out about their understanding in other ways. There is also an honouring of students’ uniqueness in how they might see or think through the mathematics that can be shown through these types of apps. Some examples of screen casting apps we use in our district our: ShowMe, Educreations, Explain Everything, 30Hands and Doceri.

Math Apps

There are many apps that can support mathematics learning – some are mathematics specific and others are used to represent and share learning. A caution is the type of math apps that are essentially a worksheet and don’t include any sort of feedback to students, visual supports, problem-solving or mathematical thinking. Some locally produced apps include the TouchCounts from SFU that uses the research around gesturing to create an interactive app that focuses on counting and decomposition and composition of quantities. Another series of BC apps are the MathTappers apps developed through the University of Victoria. Each app has visual supports for students developing their understanding of a concept as well as symbolic or abstract notation. There are also choices as the number range that students can work with, allowing for differentiation. These apps are all on our district configured iPad devices. Some specific apps from this series include Find Sums, Multiples, and Equivalents.

Screen Shot 2019-01-31 at 11.10.00 AMThe apps from the Math Learning Centre are also on our district configured iPad devices and allow for content creation and capturing students’ process and thinking. These apps are in web-based and iOS and Android formats. More information can be found HERE.

 

 

There are also so many apps that allow for students to share their thinking such as ShowMe, Educreations, Book Creator, PicCollage, 30Hands and Doceri.

Tracy Zager shares her ideas on evaluating math content apps HERE. Her non-negotiable criteria are:

1) no time pressure

2) conceptual basis for operations

3) mistakes are handled productively

Read through her blog post for explanation and examples.

The following is a link to some recommended apps and blog posts about students using them from #summertech15 and HERE is a blog post about using iPad technology and specific apps to support all students in mathematics.

 

Calculators

Although BC does not yet have a specific statement on calculator use, there is no intent that students will use calculators to complete calculations instead of learning the concepts and practice involved with operations (addition, subtraction, multiplication, division). In some cases, students that have specific learning needs and plans may use calculators as an adaptation. In some cases, teachers may choose to provide the choice of calculators when the focus of the lesson or assessment is not on calculation but on another area of the math curriculum such as problem-solving and calculators can be used for the necessary calculations so that students can focus on the other aspects of the task. Calculators can also be used to investigate patterns and relationships, support student reasoning or justification.

The NCTM has a research brief on calculator use in the classroom which can be found HERE as well as a position paper on calculator use in elementary grades which can be found HERE.

Virtual Manipulatives

Screen Shot 2019-01-29 at 11.07.00 PM

 

The Math Learning Centre offers a variety of virtual manipulatives in web, iOS and Android formats. They can be accessed HERE.

 

 

 

desmos

Desmos is a free, online graphing calculator application that is used by teachers and students all over the world. There are both web-based and app platforms. Students are “able” to play with parameters in an equation and visually see how the graph changes as the parameters change.  The desmos staff and teachers across the world have developed lessons and tasks that are open source and shared through the desmos teacher website at no cost HERE. There is also an activity builder so that teachers can create their own tasks.

I attended a math conference a few years ago where Eli Luberoff, CEO of desmos, shared his passion for the teaching and learning enabled and enhanced by this tool. In particular, I was captivated by the marble slides task he shared and the authentic learning that we witnessed happening for students in the video he shared.

Screen Shot 2019-01-30 at 9.33.08 AM

 

 

 

 

More information about Desmos and access to many classroom activities can be found HERE.

Coding and Computational Thinking

There are many links between coding and computational thinking. Two new senior math courses – Computer Science 11 and 12 have been added to our BC curriculum framework and these courses focus on coding, programming and computational thinking.  I will be sharing a blog post specific to coding and math in the next few months.

Osmo

Screen Shot 2019-01-29 at 10.56.25 PMOsmo is an interactive accessory for iPad technology that uses the camera to create Reflective Artificial Intelligence. The red camera clip and white base are used with free apps and game materials that can be purchased online or at the Apple Store. Two of its earliest games focused on mathematics – the Tangram game focuses on spatial reasoning and the Numbers games focuses on decomposition and composition of numbers. Osmo is always developing new games including a Pizza game that focuses on financial literacy and a series of coding games.

More information about Osmo can be found in a blog post here and on their website here. The SD38 DRC has five Osmo kits available to borrow. Note that one iPad device is needed for each kit.

Augmented Reality (AR)

Augmented reality (AR) is an interactive experience of a real-world environment where the objects that reside in the real-world are “augmented” by computer-generated perceptual information, sometimes across multiple sensory modalities (from Wikipedia). There is an interplay in AR between digital and real-world environments whereas in Virtual Reality (VR) you engage with a simulated environment. A few years ago we had a Google Expeditions team visit Homma school and share their Google cardboard virtual reality devices with the students. A blog post about that experience can be found HERE. This was a first foray into thinking about ways this kind of technology could support teaching and learning. My first experience with AR was a few years ago when the colAR app created a special event to go along with Dot Day (inspired by the book by Peter Reynolds). The information about this can be found HERE and is a great starting point to use AR with students.

Our new technology integration teacher consultant Ellen Reid has been exploring AR with the iPad app AR Maker . We talked about the mathematical possibilities for using AR and along with the development of spatial reasoning, the following concepts came to mind: surface area, volume, transformational geometry, scale, proportion, ratio, 2D and 3D geometry, and composition and decomposition of shapes. The following are some photos Ellen captured as she created AR WODBs (Which One Doesn’t Belong?):

WODB_AR Image-13.png(movie file)

 

 

 

 

 

 

For Richmond teachers, please also check out the Integrating Technology for Teachers page, curated by Chris Loat, on our district portal linked HERE.

 

Some questions to consider as you plan for learning opportunities to develop the competency of using technology to explore mathematics:

How can technology enhance students’ mathematical experience and see and think about mathematics in different ways?

What specific curricular content and competencies at your grade level could be explored and investigated through technology, including the use of calculators?

How can technology be used to support students’ collaboration and communication in mathematics?

What opportunities are we creating for sharing and communication with families through the use of technology?  How are we communicating with parents how forms of technology are being used in our schools to support learning in mathematics?

~Janice